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lacking. However, given the n-loop contribution to the e�ective potential, the n-loop self-energies at p2 = 0 are:

 
�
(n)
h0h0

(0) �
(n)
h0H0 (0)

�
(n)
H0h0

(0) �
(n)
H0H0 (0)

!
=

1

2

�
c� �s�
s� c�

��
@2V (n)=@v2u @2V (n)=@vu@vd

@2V (n)=@vu@vd @2V (n)=@v2d

��
c� s�
�s� c�

�
: (4)

Now, for small p2, one may reasonably approximate
�(n)(p2) � �(n)(0). In principle, the resulting approxi-
mated pole mass su�ers from two related diseases; it is
not gauge-invariant, and as we will see it has singulari-
ties (or instabilities) if evaluated at (or near) a scale Q
at which a tree-level scalar squared mass in a loop hap-
pens to vanish. However, when calculating the pole mass,
these errors are controlled by the smallness of M2

h0 com-
pared to the squared masses of the superpartners and
heavy Higgs scalar bosons in loops.
The one-loop self-energies in Landau gauge can be
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The name of a particle is used to denote its squared mass when appearing as an argument of a loop function. All of
the masses, couplings, and mixing parameters appearing here are de�ned explicitly in section II of [10], except:
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The corresponding Feynman gauge formulas are given in
[13, 14], but we need the Landau gauge results to be
consistent with the calculation of Ve� and vu; vd.

The calculation now proceeds by using the above
�(1)(p2) and, as an approximation to the actual two-loop
self-energy, the functions �(2)(0). The latter are obtained
from eq. (4) by numerically di�erentiating the e�ective
potential V (2) appearing in [10] using a �nite di�erence
method, sampling nearby points in (vu; vd) space. (One
could also di�erentiate V (2) analytically, but the result-
ing expressions are very complicated and not at all sig-
ni�cantly more accurate.)

Numerical results as a function of the choice of Q are
shown in Figure 1 for the sample test model de�ned in

section VI of [10]. This model is de�ned by DR
0
input

parameters at a scale Q0 = 640 GeV:

g0 = 0:36; g = 0:65; g3 = 1:06;

yt = 0:90; yb = 0:13; y� = 0:10; (16)

and, in GeV,

M1 = 150; M2 = 280; M3 = 800;

at = �600; ab = �150; a� = �40

and, in GeV2,

m2
Q1;2

= (780)2; m2
u1;2

= (740)2; m2
d1;2

= (735)2;

m2
L1;2

= (280)2; m2
e1;2

= (200)2;

m2
Q3

= (700)2; m2
u3

= (580)2; m2
d3

= (725)2;

m2
L3

= (270)2; m2
e3

= (195)2;

m2
Hu

= �(500)2; m2
Hd

= (270)2: (17)

With

� = 504:18112 GeV; b = (184:22026 GeV)2; (18)

this leads to a minimum at

vu(Q0) = 172 GeV; vd(Q0) = 17:2 GeV: (19)

Then the parameters of the model (including vu; vd) are
run to any other scale Q using the two-loop RG equations
of [10, 15]. There, the parameters � and b are adjusted
to ensure that Ve� is minimized; as shown in [10] this
readjustment is very small when the full two-loop e�ec-
tive potential is used. Then the pole mass is found as
described above to determine Mh0 , which is graphed in
Fig. 1 as the solid line. Ideally, this would be indepen-
dent of Q, so the fact that it is not gives an indication of
the e�ects of our approximations.
A striking feature of the graph is the presence of

instabilities near Q = 463 GeV (where the tree-level
squared mass of h0 passes through 0), and Q = 568
GeV (where the Landau-gauge tree-level squared masses
of the Nambu-Goldstone bosons G0; G� pass through 0)
[17]. The point is that for small tree-level scalar squared
masses m2

�, the e�ective potential scales like

V (2) =
X
�

m2
�[c

�
1 ln(m

2
�) + c�2 ln

2
(m2

�)] + : : : (20)

where c�1;2 are constants as m
2
� ! 0. Thus, while Ve� is

well-de�ned and continuous in that limit, derivatives of it
are not. (The Nambu-Goldstone bosons have c�2 = 0, so
the corresponding singularities are less severe.) These
and nearby values of Q simply represent bad choices,
where the approximation being made for the pole mass
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FIG. 1: The real part Mh0 of the pole mass of the lightest
Higgs boson of supersymmetry for the sample test model of
Ref. [10], as a function of the choice of renormalization scale
Q. The solid line is the result of the calculation presented
here. The dashed line shows the result if all e�ects involv-
ing electroweak couplings and lepton and slepton interactions
are removed from the two-loop contribution, corresponding to
previous approximations.

is invalidated by large logarithms. If it were available,
the use of �(2)(p2 = sh0 ), rather than the approxima-
tion �(2)(0), would eliminate the instability for choices
of renormalization scale at which the Goldstone boson
masses happen to vanish. [This is easily checked for
the analogous case at one-loop order, where replacing
�(1)(p2) by �(1)(0) leads to similar but milder numerical
instabilities, because of V (1) =

P
�(m

2
�)

2ln(m2
�)=4 + : : :

for m2
� ! 0.] Therefore, one should simply be careful to

avoid such choices for the renormalization scale [18].

For larger Q, the result for Mh0 is nicely stable. A
likely good range of scale choices is 600 GeV < Q < 700
GeV. This range includes the geometric mean of the top-
squark masses, a traditional guess for the optimal scale
for evaluating Mh0 . It also includes the scale at which
Mh0 is equal to the tree-level value mh0 , and the scale at
which the two-loop corrections to the Goldstone boson
masses vanish. In this range, the value ofMh0 calculated
by the method described here varies by less than 100
MeV. Even for the larger range 600 GeV < Q < 900 GeV,
the variation of Mh0 is about 320 MeV. For reference,
the precise result of the calculation at Q0 = 640 GeV is
Mh0 = 115:628 GeV in this model.

For comparison, also shown in Figure 1 as the dashed
line is the result which should correspond to previous ap-
proximations [3, 8] in which electroweak, tau, stau, and
tau sneutrino interactions (g; g0; y� ; a� ) are neglected in
the two-loop part [19]. Because the terms implicated in
eq. (20) are simply not included in this approximation,
the instabilities of the full calculation at special values of
Q do not appear. The more important comparison occurs

at the better choice of larger Q as in the previous para-
graph. There, the dashed-line estimate is signi�cantly
larger, and shows a stronger scale-dependence, than the
calculation presented here with the complete V (2).
I have checked that similar results are obtained in a

wide variety of MSSM models with dimensional param-
eters at or below the TeV scale, including models with
larger and smaller tan � and di�erent superpartner mass
hierarchies and mixing angles. I �nd that the calculated
Mh0 is quite generally stable to within a few hundred
MeV or less over a wide range which includes the geomet-
ric mean of the top squark masses and excludes any scales
where tree-level scalar squared masses vanish. However,
the scale-dependence ofMh0 should not be confused with
the actual theoretical error, which is probably somewhat
larger. This is because some fraction of the neglected
contributions is going to be scale-independent.
To improve the situation still further, one must calcu-

late the full two-loop self-energies �(2)(p2). The present
work has shown that the e�ects of the electroweak cou-
plings in this are certainly not negligible compared to our
eventual ability to measureMh0 at colliders. The method
outlined here will also be a useful check on a future cal-
culation of �(2)(p2) in Landau gauge, since it will have
to coincide with the p2 ! 0 limit.
The viability of any given model scenario can be tested

by conducting global �ts of Mh0 and many other observ-
able masses, cross-sections, and decay rates to a set of
underlying model parameters. If supersymmetry is part
of our future, then the determination of Mh0 will play
an important role in testing the whole structure of the
softly-broken supersymmetric Lagrangian.
This work was supported in part by NSF grant PHY-

0140129.
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